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The development of cavity growth maps for 
superplastic materials 
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Superplastic alloys usually deform to very large extents but excessive cavitation can lead to 
premature cavitation failure in these materials. Several mechanisms can contribute to the 
growth of cavities during superplastic deformation although, generally, there is only one 
mechanism that controls cavity growth. Cavity growth mechanisms of relevance to super- 
plastic materials are analysed in detail and the possible transitions in rate-controlling cavity 
growth mechanisms are considered. The contribution of lattice diffusion to the diffusional 
growth of cavities is included in the overall analysis of cavity growth. Cavity growth maps are 
constructed to show the dominant cavity growth mechanisms under different experimental 
conditions. Equations are developed to predict the appropriate transitions in cavity growth 
mechanisms with increasing cavity radii. Finally, it is demonstrated that the predictions of the 
cavity growth maps are consistent with the experimental results in several superplastic 
materials. 

1. I n t r o d u c t i o n  
Superplastic materials generally exhibit extremely 
large uniform elongations prior to failure. It is now 
recognized that most superplastic materials cavitate 
during deformation [1, 2]. Excessive cavitation during 
deformation is detrimental to the mechanical proper- 
ties of superplastic materials [3, 4] and this may limit 
the subsequent commercial use of superplastic alloys. 
Consequently, considerable research activity has been 
directed recently towards developing a better under- 
standing of cavitation in superplastic materials. It is 
known that cavitation failure occurs by the nucleation, 
growth and interlinkage of cavities; among these 
stages, the process of cavity growth is reasonably well 
understood. 

Cavities that form during superplastic deformation 
may grow by one or more of several mechanisms. A 
knowledge of the cavity growth rate equations enables 
the determination of the individual contributions of 
these mechanisms to the overall cavity growth rate. In 
general, cavity growth occurs predominantly by one 
of several mechanisms. The purpose of developing 
cavity growth maps is to display pictorially the exper- 
imental conditions over which different cavity growth 
mechanisms dominate the overall growth of cavities. 
These maps will conceivably provide considerable 
assistance in analysing and predicting cavity growth in 
superplastic materials that are tested under different 
experimental conditions. Such cavity growth maps are 
similar to the deformation mechanism maps [5-8] and 
the fracture maps [9] that were developed earlier. 

Svennson and Dunlop [10, 11] constructed cavity 
growth maps for high temperature creep conditions 

and they showed that the predictions of these maps 
were consistent with the experimental observations of 
cavity growth. Miller and Langdon [12] developed a 
cavity growth map for high temperature creep; they 
noted specifically that the map was not applicable to 
the growth of cavities which intersect more than one 
grain boundary. In fine-grained superplastic materials 
cavities are observed frequently with sizes greater than 
the grain size. 

The ability of these maps to predict the dominant 
cavity growth process depends critically on the use of 
appropriate cavity growth mechanisms in construct- 
ing the maps. Consequently, Section 2 is devoted to a 
comprehensive analysis of cavity growth in super- 
plastic materials. Following this, different types of 
cavity growth maps are developed and the possible 
transitions in cavity growth mechanisms are discussed. 
Finally, it is demonstrated that the predictions of the 
cavity growth maps developed in this study are con- 
sistent with the experimental results in several super- 
plastic materials. 

2. Analysis of cavity growth 
mechanisms 

Cavity growth mechanisms developed for high tem- 
perature creep conditions have been used successfully 
to study cavity growth in superplastic materials 
[2, 13, 14]. These cavity growth mechanisms may be 
classified into two broad categories: diffusional cavity 
growth and power-law cavity growth. For super- 
plastic materials, the diffusional cavity growth mech- 
anism that is most pertinent is the one developed 
under the assumption that surface diffusion is 
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Figure 1 Schematic illustration of the variation in the cavity growth 
rate against the cavity radius for the diffusional, superplastic dif- 
fusional and power-law growth mechanisms. 

sufficiently rapid for cavities to maintain their 
equilibrium shape. 

The diffusional growth of cavities occurs by the 
stress directed diffusion of vacancies from a zone in 
the grain boundary plane adjacent to the cavity. The 
model was developed for large grained materials in 
which several cavities are uniformly distributed on 
grain boundaries that are perpendicular to the tensile 
axis [15]. A detailed analysis by Beere and Speight [16] 
indicates that the diffusional cavity growth rate is 

dr _ 2~6Dgb 1 C r - 2 ? / r  ) 
ds k T r 2 O: (1) 

where r is the cavity radius, e is the true strain, dr/de 
is the cavity growth rate, f~ is the atomic volume, 6 is 
the grain boundary width, Dg b is the grain boundary 
diffusivity, k is Boltzmann's constant, Tis the absolute 
temperature, o- is the flow stress, 7 is the surface 
energy, ~ is the strain rate and e is the cavity size- 
spacing parameter. The cavity size-spacing parameter 
is given as 

1 
c~ = 4 In (2/2r) - [1 - (2r/,t)z][3 - (2r/2) 2] (2) 

where 2 is the inter-cavity spacing. Analyses of cavity 
growth in superplastic materials suggest that the dif- 
fusional cavity growth mechanism is important only 
during the early stages of cavity growth [2, 13, 14]. 
During the initial stages of cavitation, the cavities are 
usually small and fairly well separated. Calculations 
indicate that, under these conditions, it is reasonable 
to assume a constant value of e = 0.1 [2]. Therefore, 
putting c~ = 0.1 in Equation 1, the diffusional cavity 

growth rate is 

dr ~"~t~Dg b 1 (o"-- 27/r) 
de - 5kT r 2 L (3) 

It is interesting to note that, using a different 
approach, Dobes and Cadek [17] developed a similar 
relationship for the growth of small and well- 
separated cavities. 

Hancock [18] developed an equation for the power- 
law growth of cavities by modifying McClintock's [19] 
analysis of ductile fracture at low temperatures. The 
power-law growth of cavities occurs by the plastic 
deformation of the material surrounding a cavity. The 
power-law cavity growth rate is [18] 

d r _  ( 3 ; )  
de r - (4) 

Inspection of fine-grained superplastic materials 
after deformation frequently reveals the presence of 
cavities with sizes greater than the grain size. Under 
such conditions, it is necessary to modify the dif- 
fusional cavity growth rate to account for the increase 
in the number of paths (grain boundaries) through 
which vacancies may diffuse into a cavity [13]. A new 
model ,  termed the superplastic diffusional growth 
model, was developed for the diffusional growth of 
cavities which intersect more than one grain boundary 
[2]. This model predicts the following cavity growth 
rate [2, 20]: 

dr _ 4 5 ~ D g  b 1 o" 

de k T  d2 ~ (5) 

where d is the grain size. 
A complete analysis of cavity growth in fine-grained 

superplastic materials must include all of the above 
three mechanisms. The cavity growth rates due to 
these mechanisms are plotted schematically against 
the cavity radius in Fig. 1. In Fig. 1, r c is cavity radius 
at which the diffusional growth rate is equal to the 
power-law growth rate and rosy is the cavity radius at 
which the superplastic diffusional growth rate is equal 
to the power-law growth rate. It is to be noted that the 
superplastic diffusional growth model can be invoked 
only at rosp when cavities intersect more than one 
grain boundary. These three cavity growth mechanisms 
act independently and therefore cavity growth is con- 
trolled by the mechanism that leads to the most rapid 
growth rate. Fig. 1 indicates that small cavities will 
initially grow by the diffusional growth mechanism i; 
until they intersect more than one grain boundary. At ~; 
r = ros p there is a transition from the diffusional to the 
superplastic diffusional growth mechanism so that 
cavities with radii between romp and rcs p will grow by 
the superplastic diffusional growth mechanism. At 
r = rcs p there is a transition from the superplastic 
diffusional to the power-law growth mechanism and 
cavities with radii greater than r~p will grow by 
the power-law growth mechanism. The transitions 
between the different mechanisms are given by the 
values of rosp,  rc and rcsv: these values will depend on 
the testing conditions. The variations in the transition 
radii with experimental conditions will be used as a 
basis to construct cavity growth maps in Section 3. 
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2.1. The s ign i f i cance  of lat t ice d i f fus ion  
in d i f fus iona l  cav i ty  g r o w t h  

In general, the diffusional growth of cavities can occur 
by the diffusion of vacancies either through the lattice 
or along grain boundaries. In the original treatment of 
the diffusional growth problem, Hull and Rimmer [15] 
showed that grain boundary diffusion dominates 
lattice diffusion for their experimental conditions. The 
diffusional growth model was therefore developed 
with the assumption that vacancies diffused into 
cavities along grain boundaries [15, 16]. At high tem- 
peratures, typically > 0.8T m, where Tm is the absolute 
melting point, lattice diffusion is likely to play an 
increasingly important role in the diffusional growth 
of cavities. Burton [21] and Raj and Ashby [22] 
developed models that included contributions to dif- 
fusional cavity growth from both lattice diffusion and 
grain boundary diffusion. The relative importance of 
lattice and grain boundary diffusion can be gauged by 
determining the value of a parameter termed ~: 

2D~ 
- (6) 

7"c~Dg b 

where D~ is the lattice diffusivity. The significance of 
Equation 6 is that when 0 is less than one, grain 
boundary diffusion is the dominant vacancy diffusion 
path whereas when ~p is greater than one, lattice dif- 
fusion is the dominant diffusion path. Following 
Equation 3, under conditions where lattice diffusion 
controls cavity growth, the diffusional cavity growth 
rate is: 

dr f~kD1 1 (ff -- 2y/r) 
d-~a = 5 ~ k T  r 2 ~ (7) 

It is important to note that the superplastic dif- 
fusional growth model cannot be invoked when lattice 
diffusion dominates diffusional cavity growth because 
that model was developed only for conditions where 
grain boundary diffusion controls diffusional cavity 
growth. Thus, when lattice diffusion is the relevant 
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Figure 2 Schematic illustration of the variation in the cavity growth 
rate against the cavity radius for the lattice diffusional and the 
power-law growth mechanisms. 

T A B L E  I Cavity growth mechanisms in fine-grained super- 
plastic materials 

Mechanism Cavity Growth Rate 

Diffusion (Grain boundary) dr = ~'~lSOg b 1 ((5 -- 2y/r) 

de 5k T r 2 

Superplastic Diffusion d r _  45f~bDg b 1 a 
de k T  d 2 

Power-law dr 3y 
r 

de 2~r 

Diffusion (Lattice) dr ~2D I 1 (a - 27/r ) 
de 5~k T r 2 

diffusion path for vacancies, cavity growth can occur 
by either the diffusion or the power-law growth mech- 
anism. These two mechanisms are plotted schemati- 
cally in Fig. 2 as dr/d~ against r. In Fig. 2, r~ is the 
cavity radius at which the lattice diffusional cavity 
growth rate is equal to the power-law cavity growth 
rate. Fig. 2 predicts that cavities with radii less than r~ 
will grow by a lattice diffusional growth mechanism 
whereas those with radii greater than r~ will grow by 
a power-law growth mechanism. 

3. C o n s t r u c t i o n  o f  c a v i t y  g r o w t h  m a p s  
The cavity growth rate equations for the mechanisms 
considered in this analysis are summarized in Table I. 
The diffusional growth rate equation in Table I 
assumes that grain boundary diffusion is dominant; 
lattice diffusion dominant diffusion cavity growth is 
listed in Table I as diffusional cavity growth (lattice). 
These cavity growth mechanisms operate indepen- 
dently so that cavity growth will be controlled by the 
mechanism that leads to the highest value of dr/de. 
Cavity growth maps will be constructed for conditions 
where either grain boundary diffusion or lattice diffu- 
sion is the dominant vacancy diffusion path. 

In order to construct the cavity growth maps it is 
necessary to determine the variations in the transitions 
between the different mechanisms as a function of 
the experimental parameters. It is assumed for the 
purpose of this analysis that the cavities are large 
enough that the terms 2y/r and 37/2a in Equations 3 
and 4, respectively, can be neglected. The value of re, 
the critical radius for a transition fi'om the diffusional 
to the power-law growth mechanism, is obtained by 
combining Equations 3 and 4: 

(~"~6Dgb ~ )  1/3 
ro = \ 5 - ~  (8) 

The value of rcsp, the critical radius for a tran- 
sition from the superplastic diffusional to the power- 
law growth mechanism, is obtained by combining 
Equations 4 and 5: 

45f~aDg b 1 o" 
rcsp - k T  d2 ~ (9) 

The superplastic diffusional growth model can be 
invoked only when a cavity intersects more than one 
grain boundary. In general, this occurs when the 
cavity radius is equal to half the grain size. Thus: 

ros p = d/2 (10) 
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Figure 3 A cavity growth map of cavity 
radius against the parameter ~25Dgbe/kTi 
for a superplastic material with a grain size 
of 1 #m. 

Equations 8 to 10 can be used to construct two 
types of  cavity growth maps. First, cavity growth 
maps can be developed for a constant grain size to 
show the variation in cavity radius with the parameter  
f~6Dgb~/kT~. Second, cavity growth maps  can be 
constructed to depict the variation in cavity radius 
with grain size for a fixed value of the parameter  
~g)Dgb a/k Ti. 

3.1. Cav i ty  g r o w t h  m a p s  of  r a g a i n s t  
~cS Dgb a / k T~ 

Fig. 3 shows a cavity growth map  for a superplastic 
material with a grain size of  1 #m and it depicts the 
variations in the dominant  cavity growth mechanisms 
with cavity radii and the parameter  ~6Dgba/kT~. 
Fig. 3 covers cavity radii between 0.1 and 100 #m and 
variations in the parameter  f~SDgba/kT~ between 
10 -20 and 10-16 m 3" The following procedure was used 
to construct the map: 

(i) The transition between the diffusional and 
power-law growth mechanisms, Equation 8, was 
drawn such that when r = r c = 0.5/~m, the par- 
ameter ~(~Dgb~/kT~ = 6.4 x 10 19m3. The tran- 
sition line has a slope of  1/3 and it is marked as re in 
Fig. 3. 

(ii) The horizontal line in Fig. 3 corresponds to the 
cavity radius, ro~p, at which the cavity intersects more 
than one grain boundary. It follows from Equation 10 
that for a material with a grain size of  1 #m, the 
horizontal line marked romp in Fig. 3 should be drawn 
at r = rosp = 0.5 #m. 

(iii) The transition between the superplastic diffu- 
sional and the power-law growth mechanisms was 
drawn with a slope of unity. The position of the 
line was identified by noting that when r = rcs p = 
I gm, the parameter  ~6DgbO/kT~ = 2.2 x 10 -~~ m 3, 
Equation 9. This line is marked as rc~p in Fig. 3. 

Fig. 4 shows a similar cavity growth map  for a 
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Figure 4 A cavity growth map of cavity 
radius against the parameter f~SDgb~/kTd 
for a superplastic material with a grain size 
of 10~m. 
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Figure 5 A cavity growth map of  cavity 
radius against the parameter fL~D/r/TtkTi 
for a superplastic material deformed at 
elevated temperatures. 

superplastic material with a grain size of 10 ym. It is to 
be noted from a comparison of  Figs 3 and 4 that an 
increase in the grain size significantly reduces the 
superplastic diffusional cavity growth field. The 
possible transitions in cavity growth mechanisms are 
discussed in detail in Section 4. 

Fig. 5 shows a cavity growth map for these con- 
ditions. The transition between the lattice diffusional 
and power-law growth mechanisms, Equation 1 1, was 
drawn such that when r = r~ = 1 ym, the parameter 
(~22Dla/~kTi) = 5 x 10 18m3. The transition line 
has a slope of 1/3 and it is marked as r; in Fig. 5. 

3. 1.1. A map for lattice diffusional 
ca vity growth 

As noted in Section 2.1, under conditions of  lattice 
diffusion dominance, cavity growth may occur by 
either the power-law growth mechanism or the lattice 
diffusional cavity growth mechanism. Again, neglect- 
ing the 37/2o- and the 2~/r terms in Equations 4 and 7, 
respectively, the critical radius for a transition from 
the lattice diffusion controlled to the power-law 
growth mechanism, r'o, can be determined by combin- 
ing Equations 4 and 7: 

rc L57zkT (11) 
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3.2. Cavi ty  g r o w t h  m a p s  of  r aga ins t  d 
Fig. 6 shows a cavity growth map for a superplastic 
material deformed under conditions where the par- 
ameter OSDgba/kTi = 10 is m 3. It covers cavity radii 
between 0.1 and 100#m and grain sizes between 0.1 
and 100#m. The following procedure was used to 
construct the map: 

(i) The transition between the diffusional and the 
power-law growth mechanisms is independent of the 
grain size and Equation 8 predicts that for f~6Dgba/ 
kT~ = 10 iSm 3, r = r c = 0.58#m. Therefore, this 
transition is represented by a horizontal line at 
r = rc = 0.58ym and it is marked as rc in Fig. 6. 

102 
Figure 6 A cavity growth map of cavity radius against the 
grain size for a superplastic material that is deformed when 
~6Dgba/kT~ = 10 -18 m 3. 
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Figure 7 A cavity growth map  of cavity radius against the 
grain size for a superplastic material that is deformed when 
Q6Dgbe/kT~ = 10 -t9 m 3. 

(ii) The superplastic diffusional growth model can 
be invoked only at r = rosp = d/2. Therefore, the 
onset of  the superplastic diffusional growth mech- 
anism is depicted by a straight line with a slope of  
unity and it is marked as rosp in Fig. 6. From Equation 
10, the position of this line was identified by noting 
that when d = 1.0/tm, r = ros p = 0.5#m. 

(iii) The transition between the superplastic diffu- 
sion and the power-law growth mechanisms is given by 
the line marked as rcsp in Fig. 6. Following Equation 
9, this line was drawn with a slope of  - 2  and it was 
positioned such that when d = 1/~m, r = rcs p = 

45 #m. 

A similar cavity growth map is shown in Fig. 7 for 
the value of  the parameter DgDgb~/kTi = 10 ~9 m 3. 
An inspection of  Fig. 6 indicates that for ff26Dgba/ 
kTe = 10 -18 m 3, the superplastic diffusional cavity 
growth model is relevant only up to a maximum grain 
size of 4 .5#m whereas Fig. 7 indicates that for 
~3Dgba/kT~ = 10 19 m 3, the superplastic diffusional 
growth model is relevant only up to maximum grain 
size of ,-- 2.1 #m. The above observations suggest that 
an increase in the value of a/i, corresponding to 
experiments conducted at lower strain rates, leads to 
increase in the maximum grain size up to which the 
superplastic diffusional growth model is relevant. 

4 .  A n a l y s i s  a n d  d i s c u s s i o n  

In order to avoid repetition, this section will focus 
largely on the cavity growth maps shown in Figs 3 and 
4. The other types of cavity growth maps, Figs 5 and 
7, can be analysed in a similar manner. 

A close inspection of Figs 3 and 4 reveals that, 
depending upon the experimental condition, the 
growth of cavities could lead to three different series 
of transitions in cavity growth mechanisms. With 
increasing cavity radii, these series of transitions in 
cavity growth mechanisms are: 

(a) diffusion to superplastic diffusion to power-law, 

(b) diffusion to power-law to superplastic diffusion 
to power-law, and 

(c) diffusion to power-law. 

Equations will be developed now to predict the series 
of transitions in cavity growth mechanisms that will 
occur under any set of experimental conditions. 

An examination of Fig. 3 indicates that the (a) series 
of transitions occurs when ~bDgba/kT~ >~ 6.3 x 
10-19 m 3" In general, these transitions will occur when 

ro > ros p (12) 

Combining Equations 8 and 10 with Equation 12 
results in the following condition for the occurrence of 
the (a) series of transitions: 

(~6Dgb ~.) > 5 d3 (13) 
k r  ~ g 

It is to be noted that in accordance with Fig. 3, 
Equation 13 predicts the occurrence of the (a) series of  
transitionswhenf2c~Dgba/kT~ > 6.3 x 10 -19 m 3 fo ra  
grain size of  1 #m. 

Fig. 3 indicates that the (b) series of transitions in 
cavity growth mechanisms occur when 1.1 x 10 20 
m 3 < f~(~Dgba/kT~ ~ 6.3 x 10 -19 m 3. In general, an 
inspection of Figs 3 and 4 reveals that the (b) series of 
transition will occur when 

r c ~< rosp ) 
and l (14) 

rcs p ~, ros p 

The combination of the above equation with Equations 
8 to 10 indicates that the (b) series of  transitions will 
occur when 

d 3 ~"~c]Dg b o- 5 d3 
- -  < - - -  < - ( 1 5 )  
90 ~ kT ~ ~ 8 

An inspection of  Fig. 4 reveals that the (c) series of 
transitions in cavity growth mechanism occurs when 
~2(~Ogb~Y/kTr, <~ 1.1 X 10-~Vm 3. In general, these 
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TABLE II Conditions for the occurrence of different series of 
transitions in cavity growth mechanisms 

Series of transitions ' Conditions 

Diffusion to superplastic diffusion 
to power law 

Diffusion to power-law to super- 
plastic diffusion to power-law 

Diffusion to power-law 

a 6 o ~  > 5__a3 
kT  ~ 8  

d 3 a~Dg b 0- 5 d3 
i < _ _ - -  < 

90 ~ kT  ~ ~ 8 

d 3 Q C ] D g  b o- < - -  

kT  ~ ~ 90 

transitions will occur when 

r,sp < romp (16) 

The following general condition is obtained by com- 
bining Equation 16 with Equations (9) and (10): 

d 3 
~6Dgb O- < - -  (17) 

k T  ~ ~ 90 

An important consequence of the above analysis is 
that when Equation 17 is satisfied, it is not necessary 
to consider the superplastic diffusional growth model 
for cavity growth. This simplifies the construction of 
the cavity growth maps since the transition from the 
diffusion to the power-law growth mechanism is 
independent of the grain size. The conditions for the 
occurrence of the above three series of transitions are 
summarized in Table II. 

Fig. 5 is a cavity growth map for conditions when 
lattice diffusion is the dominant vacancy diffusion 
path. It is not necessary to re-construct this cavity 
growth map for different superplastic materials since 
the transition from the lattice diffusional to the power- 
law growth mechanism is independent of the grain 
size. 

An examination of Figs 6 and 7 indicates that, 
depending upon the experimental conditions, there 
are three possible series of transitions in cavity growth 
mechanisms. The conditions for the observation of 
these series of transitions are the same as those given 

by Equations 13, 15 and 17. A comparison of Figs 3 
to 7 reveals that the superplastic diffusional growth 
model is likely to play an important role during cavity 
growth in superplastic materials only when the grain 
size is small and the specimens are deformed at low 
strain rates and intermediate temperatures. 

It is important to note that the above cavity growth 
maps were developed by neglecting the 27/r and 37/2o" 
terms in the cavity growth rate equations. Therefore, 
these cavity growth maps cannot be used to predict the 
transitions in cavity growth mechanisms at relatively 
small cavity radii. At small cavity radii, the 27/r 
term has an effect of reducing the cavity growth rate, 
Equation 3. It is reasonable to assume that the 27/r 
term retards cavity growth negligibly when it is less 
than approximately 25% of the imposed stress level. 
Therefore, these maps can be used when 

a - (27 - r) > (3/4)o- (18) 

Rearranging the terms in Equation 18, the maps can 
be used to predict the transitions in cavity growth 
mechanisms when 

r > 87/o- (19) 

For a typical value of 7 = 1 J m -2, the above require- 
ment limits the use of these cavity growth maps to 
cavity radii greater than approximately 0.8/~m for a 
stress level of 10 MPa and 0.08 #m for a stress level of 
100MPa. 

5. Compar ison  w i t h  exper imenta l  
results 

In this section, the predictions of the cavity growth 
maps will be compared with the experimental results 
on cavitation in three superplastic materials. The 
experimental results were chosen to demonstrate the 
use of the cavity growth maps when either grain 
boundary or lattice diffusion is important. It is 
relevant to note that diffusional growth processes 
generally lead to the development of rounded cavities 
whereas the power-law growth mechanism results in 
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TAB LE I I I Data used to calculate the cavity growth rates 

Patermeter (units) Cu 2.8% A1-1.8% Si 0.4% Co Cu 38% Zn-15% Ni A1-5.5% Zn-2.2% Mg 1.6% Cu 

Value Reference Value Reference Value Reference 

7 (Jm 2) 1.1 22 1.2 14 0.55 31 

(m 3) 1.2 X 10 -29 8 1.1 X 10 -29 14 1.7 X 10 -29 32 

Dogh, (m2sec l) 1 x 10 -5 8 1 x 10 5 14 1 x 10 -4 8 

Qgb* (kJ mol-  i ) 103 8 157.2 26, 27 84 8 

DI (m2sec l) . . . .  1.7 X 10 4 8 

exp ( - -  142000~8.3T / 

T (K) 823 2 853 14 789 31 

(MPa) 12 2 25 14 5 31 

(sec - t )  1.3 x 10 -s 2 5.5 x 10 4 14 2 x 10 -4 31 

*Dg b = Dog b exp ( -  Qgb/RT), where Dog b is a frequency factor, Qgb is the activation energy for grain boundary diffusion and R is the gas 
constant. 

cavities that tend to be elongated along the tensile 
axis. The change in cavity morphology with cavity 
growth mechanism has been used successfully to 
rationalize the experimental results on cavity growth 
in several superplastic materials [2, 13, 23, 24]. 

5.1. Grain boundary diffusion dominates 
lattice diffusion 

5. 1.1. Cu-2.8% A1-1.8% Si-0.4% Co 
This commercial copper-based superplastic alloy had 
a grain size of  2.8 #m; it was tested at a temperature 
of  823K and a strain rate of  1.3 x 10 5sec-~ [2]. 
A microstructural examination of the specimen 
deformed to failure revealed that cavities with radii 
less than ~ 15-20#m were rounded whereas those 
with radii greater than ~ 2 5  30#m were elongated 
along the tensile axis [2, 20]. Fig. 8 is a map for cavity 
growth in a superplastic material with a grain size of  
2.8 #m. Calculations indicate that for the experimental 
conditions used [2], the value of the parameter  
f~ODgba/kT~ = 3.2 x 10 -18 m3; the data used for this 
evaluation are given in Table III.  The experimental 
conditions are represented in Fig. 8 by a vertical 
broken line at f~fDgba/kT~ = 3.2 x 10 - m m  3. 

Fig. 8 predicts that cavities with radii < 0.8 #m will 
grow by the diffusional growth mechanisms whereas 
those with radii between --~ 0.8 and 1.4 #m will grow 
by a power-law growth mechanism. However, in 
regions close to the line separating two growth mech- 
anisms, both of the mechanisms will contribute signifi- 
cantly to cavity growth. Therefore, it is reasonable to 
assume from Fig. 8 that there is a direct transition 
from the diffusional to the superplastic diffusional 
growth mechanism at a cavity radius of  ~ 1 #m. 
Finally, at a cavity radius of  ~ 18 #m, there is a tran- 
sition from the superplastic diffusional to the power- 
law growth mechanism. Thus, the cavity growth map  
shown in Fig. 8 predicts that cavities with radii 
< 18 #m will be rounded due to the dominance of 
diffusional growth processes whereas cavities with 
radii > 18 #m will be elongated along the tensile axis 
due to the dominance of the power-law growth mech- 
anism. This theoretical prediction is in good agree- 
ment with the experimental observation of  such a 
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transition in cavity morphology at cavity radii of  ~ 20 
to 25 #m [2, 20]. 

5. 1.2. Cu-38% Zn-15% Ni 
Livesey and Ridley [14, 25, 26] have performed exten- 
sive studies of  cavitation in this alloy. The material 
had a grain size of  ,-~ 3 #m and the testing temperature 
was 853 K [14]. For  the experimental conditions used, 
the value of the parameter  f~fDgba/kT~ is determined 
to be 4.8 x 10 -23 m 3 (Table III). It  is reasonable to 
interpret cavity growth in the Cu-38% Zn 15% Ni 
alloy using Fig. 8 that was drawn for a grain size of  
2.8 #m. Inspection of  Fig. 8 indicates that the super- 
plastic diffusional growth mechanism is not relevant 
for values of  the parameter  ~(~Dgbff/kT~ less than 
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~ 2  • 10 - t9  m 3. In addition, for the experimental 
value of the parameter ~(~Dgb~7/kT~ = 4.8 x 
10 -23 m 3, the value of r c is significantly less than 
0.1/~m. It is therefore suggested that, upon nucleation, 
cavity growth in this material occurs solely by the 
power-law growth mechanism. This conclusion is in 
agreement with the detailed analysis of cavity growth 
in this alloy by Stowell [1, 28] and Livesey and Ridley 
[14, 26, 271. 

5.2. Lattice diffusion dominates 
grain-boundary diffusion 

5.2. 1. AI-5.5% Zn-2.2% Mg-1.6% Cu 
This alloy has considerable potential for commercial 
applications in the aerospace industry [29]. Extensive 
studies indicate that 789K is the optimum tem- 
perature for the superplastic forming of the alloy [301. 
The material typically has a grain size of ~ 15 #m and 
superplastic deformation usually leads to the occur- 
rence of large elongated cavities [30-33]. In super- 
plastic materials, the inter-cavity spacing is usually 
greater than the grain size and therefore it is assumed 
for the present analysis that 2 -~ 2d = 30 #m. Using 
the values of Di and Og b for pure aluminium (Table III) 
and Equation 6, the value of the parameter ~k is deter- 
mined to be -~ 5. This calculation indicates that, for 
the experimental conditions used in this alloy, dif- 
fusional cavity growth occurs predominantly by the 
lattice diffusion of vacancies since the value of ~ is 
significantly greater than 1. 

Fig. 9 shows the variation in cavity growth rate 
against cavity radius on a logarithmic scale. The data 
used to plot Fig. 9 are summarized in Table III. An 
examination of Fig. 9 suggests that cavities with radii 
> 1.3/~m will grow by the power-law growth mech- 
anism. For the experimental conditions corresponding 
to cr/i = 2.5 x 104 MPasec -~ and T = 789K, calcu- 
lations indicate that the parameter f~2D~a/nkT~ = 
2.4 x 10 17 m 3. As noted earlier, Fig. 5 can be used as 
a cavity growth map for all superplastic materials 
when lattice diffusion dominates over the grain 
boundary diffusion of vacancies. An analysis of cavity 
growth based on Fig. 5 predicts that, when a vertical 
line is erected at Q2Dla/nkT~ = 2.4 x 10 -~7 m 3, the 
transition from the lattice diffusional to the power-law 
cavity growth mechanism occurs at a cavity radius of 

1.3/~m. The above analysis indicates that cavities 
with radii > 1.3 #m will be elongated along the tensile 
axis due to the dominance of the power-law growth 
mechanism. This theoretical prediction is in agree- 
ment with the experimental observation of large 
elongated cavities in this alloy [30 33] and a detailed 
analysis of cavity growth by Bampton and Raj [32]. 

6. Summary and conclusions 
1. Appropriate cavity growth mechanisms for 

superplastic materials are considered in detail and 
the contribution of lattice diffusion to cavity growth is 
included in the overall analysis of cavity growth. 

2. Two different types of cavity growth maps are 
developed to depict the variation in dominant cavity 
growth mechanisms. First, cavity growth maps of 
cavity radius, r, against the parameter QSDgb ~/k Ti are 

constructed for a fixed grain size. Second, cavity 
growth maps of r against the grain size, d, are 
developed for a fixed value of the parameter f~SDgba/ 
kTL 

3. Simple procedures are outlined for the construc- 
tion of the two types of maps for materials with 
different grain sizes and for materials tested with dif- 
ferent values of the parameter f~SDgba/kT~. 

4. Conditions are developed to predict the appro- 
priate transitions in cavity growth mechanisms with 
increasing radii and the limitations of these maps at 
very small cavity radii are discussed. 

5. It is demonstrated that the predictions of the 
cavity growth maps are in agreement with the exper- 
imental results on cavitation in several superplastic 
materials. 

Acknowledgement 
The author would like to acknowledge a useful 
discussion with Professor Terence G. Langdon at the 
University of Southern California. 

References 
l. M. J. STOWELL,  in "Superplastic Forming of Structural 

Alloys", edited by N. E. Paton and C. H. Hamil ton (The 
MetatlurgicaI Society o f  AIME,  Warrendale,  Pa., U.S.A., 
1982) p. 321. 

2. A. H. CHOKSHI ,  PhD thesis, University of  Southern 
California, Los Angeles (1984). 

3. R. D. S C H E L L E N G  and G. H. REYNOLDS,  MetalL 
Trans. 4 (1973) 2199. 

4. C. C. BAMPTON and J. W. E D I N G T O N ,  J. Eng. 
Mater. Teehnol. 105 (1983) 55. 

5. M. F. ASHBY, Acta Metall. 20 (1972) 887. 
6. F. A. M O H A M E D  and T . G .  L A N G D O N ,  Metall. 

Trans. 5 (1974) 2339. 
7. T. G. L A N G D O N  and F. A. M O H A M E D ,  J. Mater. Sci. 

13 (1978) 1282. 
8. H. J. FROST and M. F. ASHBY, in "Deformat ion 

Mechanism Maps"  (Pergamon Press, Oxford, 1982). 
9. M. F. ASHBY, C. G A N D H I  and D. M. R. TAPLIN,  

Acta Metall. 27 (1979) 699. 
10. L-E. SVENNSON and G. L. DUNLOP,  Int. Met. Rev. 26 

(1981) 109. 
l l. Idem, in "Creep in Structures", edited by A. R. S. Ponter and 

D. R. Hayhurs t  (Springer-Verlag, Berliln, 1981) p. 445. 
12. D. A. MILLER and T. G. L A N G D O N ,  Seripta Metall. 

14 (1980) 179. 
13. Idem, Metall. Trans. A 10A (1979) 1869. 
14. D. W. L[VESEY and N. RIDLEY,  ibid. 13A (1982) 1619. 
15. D. HULL and D. E. R IMMER,  Phil. Mag, 4 (1959) 673. 
16. W. BEERE and M. V. SPEIGHT,  Met. Sci. 12 (1978) 

172. 
17. F. DOBES and J. CADEK,  Scripta Metall. 4 (1970) 1005. 
18. J. W. H A N C O C K ,  Met. Sci. 10 (1976) 319. 
19. F. A. M c C L I N T O C K ,  J. Appl. Mech. 35 (1968) 363. 
20. A. H. CHOKSHI  and T. G. L A N G D O N ,  in "Superplas- 

ticity", edited by B. Baudelet and M. Cuery (CNRS, Paris, 
1985) p. 21. 

21. B. BURTON,  Phil. Mag. 30 (1974) 953. 
22. R. RAJ and M. F. ASHBY, Acta Metall. 23 (1975) 653. 
23. D. A. M I L L E R  and T. G. L A N G D O N ,  Trans. Jpn Inst. 

Met. 21 (1980) 123. 
24. A. H. CHOKSHI ,  J. Mater. Sci. Lett. in press. 
25. D. W. LIVESEY and N. RIDLEY,  Metall. Trans. 9A 

(1978) 519. 
26. N. RIDLEY,  D. W. LIVESEY and A. K. M U K H E R -  

JEE, J. Mater. Sci. 19 (1984) 1321. 
27. D. W. LIVESEY, N. R IDLEY and A. K. M U K H E R -  

JEE, ibid. 19 (1984) 3602. 
28. M. J. STOWELL,  Met. Sci. 14 (I980) 267. 

2081 



29. C. H. HAMILTON, C . C .  BAMPTON and N . E .  
PATON, in "Superplastic Forming of Structural Alloys", 
edited by N. E. Paten and C. H. Hamilton (The Metallurgical 
Society of AIME, Warrendale, Pa., USA, I982) p. 173. 

30. C. C. BAMPTON and J. W. EDINGTON, Metall. Trans. 
13A (1982) 1721. 

31. A. K. GHOSH, in "Deformation of Polycrystals: Mech- 
anisms and Microstructures", edited by N. Hansen, A. 
Horsewell, T. Leffers and H. Lilholt (Rise National Labora- 
tory, Roskilde, Denmark, 1981) p. 277. 

32. c.  c.  BAMPTON and R. RAJ, Acta Metall. 30 (1982) 
2043. 

33. C. C. BAMPTON, M. W. MAHONEY, C. H. HAMIL- 
TON, A. K. GHOSH and R. RAJ, Metalt. Trans. 14A 
(1983) 1583. 

Received 11 April 
and aecepted 14 August 1985 

2082 


